Resources: Science

From OER in Education
Jump to: navigation, search


Relevant resources


Acids Forensic Science Investigation
Forensic1.png
A who-dunnit circus of activities
This lesson introduces inquiry(ta)-based learning through the topic of forensic science. It engages pupils in higher order(ta) reasoning(ta) solving a variety of forensic problems.
Argumentation Starting an Argument in Science
Startinganarguement1.png
Strategies to get discussion going
This resource provides a table of useful activities and effective prompts to stimulate reasoning(ta) argumentation(ta) and discussion(ta) in science teaching.
Astronomy Celestial Wanderers
Astronomymasterclasstitlepage.png
Why would we fly to another planet to study its rocks?
Drawing on a rich range of sources, this presentation allows the teacher to introduce planetary geology(topic), something not normally studied until degree level. It uses the narrative(ta) of the Voyager Probes journey to illustrate the vastness of the solar system(topic) and also the challenges of designing a spacecraft to travel that far. It ends with a discussion of the history(topic) of Mars, and how the differences between it and the Earth resulted in Mars loosing its water and atmosphere whereas we have kept ours.
Astronomy Alien Life
Alienlife.png
Are we alone?
This last of six presentations to recruit students for A level physics, is more light-hearted and simpler than the two previous resources. It considers the arguments around whether or not humanity is alone and includes an initial look at the bizarre nature of many of the claims of alien encounters - including a fictional one for good measure - before moving onto the more serious side of alien hunting. It concludes with a probabilistic argument based on the Fermi paradox.
Astronomy Astronomy Master Class
Astronomymasterclassoverview1.png
An overview of of six astronomy-related lessons resources (SC019 to SC0024)
The Astronomy Master Class was developed to inspire the next generation of scientists and in particular physicists. Although this course of 6 lessons is framed mostly around the science of astronomy, it draws on many themes from physics and aims to show how they all can link together. Additionally, it is structured so that it deliberately does not cut across material in most standard GCSE science courses and does not aim to answer every question. A deliberate part of the design was to visit each topic area only briefly and leave students hungry for more.
Astronomy It's full of stars
Astronomymasterclasstitlepage.png
Using a telescope and considering how those early astronomers may have worked
Astronomy(topic) has been practiced for centuries and doesn't require expensive equipment! This first session aims to train the whole class(ta) to use a telescope and, hopefully, to provide an opportunity to engage in some active learning(ta). The lesson includes some naked-eye observations and describes how modern technology helps scientists know where to look. You can explore the scientific method(ta) and language(ta) at this point, using targeted questioning(ta)/differentiation(ta). Students may be able to engage in an inquiry(ta)-based project around this work, perhaps for homework(ta).
Astronomy From Earth to Moon
Astronomymasterclasstitlepage.png
Why the efforts to get to the moon in the 1960's might make you understand why we've not returned since.
The race to the Moon was as much driven by politics as science, and this backdrop continues to influence space exploration and terrestrial research to this day. It was an amazing achievement to travel so far - guided by computers that were trivial set beside today's mobile phones. It is a story well worth telling to encourage engagement in science, scientific method(ta) as well as the understanding of the ethical(topic) context of this pursuit.
Astronomy Stars in the sky: what's up?
Stellariumscreenshot.png
Use a software planetarium and encourage students to think about astronomy
This activity offers an opportunity for whole class(ta) discussion(ta) and questioning(ta) centred around the use of the Stellarium. It also affords good opportunities for self-directed study or homework(ta) extensions, including perhaps the use of free mobile apps(tool) (see below). There are also opportunities for some cross curricula(i) discussion of geography (navigation by stars) and history or literacy in relation to the ancient world.
Astronomy Recreating the Big Bang
Astronomymasterclasstitlepage.png
An introduction to the creation of the Universe.
This presentation offers a tour of the European Organization for Nuclear Research (CERN) and explains why it is worth spending money on one experiment. It then delves into particle physics, looking at sub-atomic particles to offer analogies for what these particles are. The session focuses on whole class(ta) dialogue(ta) and higher order(ta) thinking skills as well as exploring scientific language(ta). This 4th session and the 5th are together the most theoretically complex and they present challenges to young peoples world views. As such they are led as much by their questions(ta) as by the presentation.
Biodiversity Using Science to Support Biodiversity
Biodiversity1.jpg
A virtual field trip to study biodiversity.
This is an investigation(ta) in a virtual field trip to Dartmoor National Park. It involves research, designing a scientific investigation and analysing the results.
Blogs Digital Reporters at Camp Cardboard
DEFTBradfieldDungworth.jpg
Children using iPads to blog about Cardboard Sculptures
This activity is a cross curricula(subject) activity, involving a collaborative(tool) approach, giving children the opportunity to work together on a blog. Children were encouraged to engage in group talk(ta) and discussion(ta) in the classroom to reflect on the activity they were to report on. The activity furthers e-skills(topic) and e-safety(topic) through the use of whole class(ta) participation. The specific art activity provided a great stimulus for the blogging. Equally, however, this approach could be applied to any event in or out of school. The use of blogging and social media gave the opportunity for children to share their ideas with a wider audience, and also gave opportunities for real-time feedback to their work. The use of hand-held technology also enabled active learning(ta) as the portability of the iPads and iPods allowed them to be used outside the classroom.
Contemporary issues Teaching the Science of Contemporary Issues
Contemporyissues1.jpg
Find lesson inspiration aplenty from news clips and stories.
This longer (32 page) resource provides useful guidance, examples, and CPD activities for exploring contemporary issues in science, particularly to stimulate effective group talk(ta) and discussion(ta), and provoke pupil's interest in science.
Differentiation Differentiation
ORBIT-wiki-logo.jpg
Developing effective techniques for differentiation by task and outcome
The small group work(ta) nature of this task allows teachers to share ideas, and attempt to conceptualise two different types of differentiation(ta), together. It also encourages teachers to share practice(i)s in differentiation. Teachers are first asked to consider differentiation ‘by task’ by thinking about self-sustaining activities which pupils could manage with little support. They are also asked to consider differentiation by outcome, and ‘hierarchies of achievement’ for particular topics. The practical nature of the task offers a concrete outcome for teachers to take away and use in their practice both day to day, and in curriculum planning(topic). The resource could be used as a prompt to start teachers off, a comparator for teachers working on similar topics, or just as an additional set of possibilities.
Discussion The Environment for Group Talk in Science
Climateforgrouptalk-dfes1.jpg
"Ask questions rather than provide answers: ‘What’s the strength of his or her point?’ ‘How you could check that out?’ "
This resource contains a set of activities and examples to discuss and work through based around maintaining group talk(ta) in whole class(ta) and group work(ta) settings, including setting up Ground Rules, and creating appropriate environments (physical and 'class rule' based) for argumentation(ta) and discussion(ta)
Discussion Discussion in Science Teaching
Discussion in Science Teaching1.jpg
Equip yourself to run a discussion in class
This resource is aimed at developing student teachers’ skills in working with discussion(ta). It can be presented to them as a hand-out to accompany an activity or read as reference material. See it online at BEEP website. Although it uses a science context, the real focus of the resource is managing and organising discussion-based activities. It provides guidance on:
  • Starting and structuring a discussion
  • Organising group talk(ta)
  • Role Play/drama(ta)
  • Ground Rules for discussion and handling difficult discussions
Environment Our Living Environment
Our Living Environment1.png
Wise up on ecology
This study module, an online booklet, deals with the particular ways of thinking about and studying of the environment. It is a useful homework(ta) resource to encourage pupils to engage with key scientific vocabulary(ta) and use their knowledge of the scientific method(ta) to engage with inquiry(ta) learning.
Ethics Cloning
Cloning0.png
Cloning - Potential and Issues
The topic of the ethics(topic) of modern biology needs to draw on a wider range of sources than a printed book may provide. This resource uses a web tutorial interspersed with external links to news and comment. Rather than leave the students to explore too many interests, a worksheet with questions enables the teacher to focus the students on a subset of the material. You can adapt this to your particular need, for example, if you wanted students to have a discussion(ta)in small groups. You might also consider using a blog, chat room or other ICT tools to record the questioning(ta) and reasoning(ta) around this topic. The lesson-planning proforma (or draft lesson plan) includes a list of objectives that shows the scope of the material.
Ethics Designer Babies
Designerbabies1.jpg
When does life actually begin?
By using an informative web tutorial, this resource aims to stimulate discussion(ta) on the ethics(topic) of modern biology. A worksheet asks students where they stand and reassures them that their response might be kept private. You might also consider using a blog, chat room or other ICT tool to record the questioning(ta) and reasoning(ta) around this topic. A teaching section offers guidance on 'teaching argument' using 'Toulmin’s model of argument' and 'The IDEAS project'.
Ethics Ethical issues in human reproduction
Ethicalissues1.png
Why does reproduction raises so many ethical issues? When does life begin?
This lesson outline stimulates A-level students to engage in discussion(ta), develop their reasoning(ta) skills and increase their awareness of the bioethical(topic) issues involved in human reproduction.

Background texts and open-ended questioning(ta) about human reproduction, contraception and IVF are provided as the stimulus. Small group discussion about these topics, writing on post-it notes, and reading case studies aim to get students reasoning(ta) to justify their opinions, and to compare and evaluate competing views. Finally, whole class(ta) discussion synthesises the emerging ideas and encourages students to consider changing their positions or adding additional issues to a recording table.

Force Force
Forceimage1.jpg
Thinking about 'force' in the national curriculum
This sessions engaged pupils in inquiry(ta) using the scientific method(ta) to explore force. It offers opportunity for teachers to use higher order questioning(ta), whole class assessment(ta) and to engage pupils in effective group work(ta) for investigation.
Force Forces in Static Situations
Strong man.png
What are forces, how do you describe them and just where do they act?
This resource is part of a set of 7 ORBIT resources and can be used in different ways:
  • As a ‘dip in’ resource for teachers needing ideas about exploring forces.
  • As the foundation for a larger topic involving all of the activities as the inspiration for a large body of work on the exploits of Nelly the Elephant. There are clear links to literacy (Nelly’s story), numeracy (weighing and measuring), music (the song – how can it represent her journey in sound), art representations of elephants, designs based on India elephants in traditional tack), geography (the origins of elephants), history (Hannibal and historical uses of elephants).
  • At Foundation Stage children would be exploring forces in terms of pushes and pulls on various objects and are unlikely to be recording their results. At KS1 and KS2 children may be exploring forces by considering the idea of size and direction of force as well as the concept of balanced/equal or unbalanced/unequal forces. After a brief discussion(ta) about what the children know already about forces an interesting activity is to ask them to see what in the classroom they can move by pushing. Discuss their findings and ask about the size of force they were using on the objects and in which direction the force was acting. Use some pupils to demonstrate their actions. Then discuss the concept that there are forces acting in the other direction as well. If the object moves then the pushing force of the child is larger than the force acting in the other direction. Ask the children to try moving the wall by pushing. Then discuss the idea that the force of the wall holding together and staying still is equal to the force they are using to try to move it - otherwise there would be movement either of the wall or of the children backwards. A good way to demonstrate this difficult concept is to push a bulldog clip against a wall, using the wall to push one of the levers on the clip. Following this practical activity the children might pick one or two situations and use arrows to record the size and direction of forces in the drawn situation.
Force Building bridges from a piece of A4 paper
Bridges.png
A bridge too far...
This activity supports a number of learning types:
  • small group work(ta) - investigation conducted by small groups reporting back to the class.
  • whole class(ta) dialogue(ta) - discussion of each situation 
open-ended questions(ta) – why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – linked in with the rest of the activities in this OER, topic work in design and technology, literacy, numeracy
  • inquiry(ta)-based learning – initial presentation to the class can be framed as a problem for them to solve; co-enquiry – children working collaboratively
  • arguing and reasoning(ta) – persuading each other about their explanations.
  • exploring ideas – developing understanding of key scientific principles.
Force What makes a good paper airplane?
Airplane.png
This activity supports these learning types:
  • small group work(ta) - groups conduct an investigation and report back to the class.
  • whole class(ta) dialogue(ta) - they discuss 
open-ended questions(ta): why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – the activity connects with others in this OER on forces, with literacy and numeracy and with topic work in design and technology.
  • inquiry(ta)-based learning – an initial presentation to the class can be framed as a problem to solve; children work collaboratively (co-enquiry)
  • arguing and reasoning(ta) – children persuade each other about their explanations.
  • exploring ideas – the activity develops understanding of key scientific principles.
Force Floors and Pillars
Pillars.png
So many uses for toilet roll tubes - use them as a support for a floor.
Pupils work in small groups(ta) with basic supplies (exercise books and cardboard folders can be used as floors and objects from around the room as weights) to design, build and test a floor supported by toilet roll tubes. If conducted independently the activity could be used as an assessment piece. The activity could be presented as a problem to be solved - enquiry(ta) = can you build a floor to support Nelly the Elephant? Some children may not realise that upright toilet roll tubes are less likely to be squashed than horizontal tubes so it may be useful to pause the session after a short while to share ideas. There is a useful lesson here for pupils: some materials work well in buildings when used in a certain way but less well when used in another way, therefore it is important to understand the properties of materials before using them in buildings.
Force The Elephant on the Bridge
Elephantcloseup.png
She's standing still but there are still forces on her - find out what they are.
An interactive way of exploring this activity might be to have the children in small groups(ta) building a rope/string bridge and using a model elephant to stand on it. The children could either observe what happens and then discuss it or could film it and watch in time lapse to see exactly where the movement occurs in the bridge/elephant system. The latter would assist them in considering the direction of the forces acting as they would be able to see the direction of movements very clearly.
Force Moving and falling objects
Airplane.png
Understanding moving and falling objects as well as progression through the years
This published article explores the sorts of objectives(ta) they should be meeting, and the questioning(ta) teachers may engage in. The activities, aimed at progressively older children, engage them in inquiry(ta) based learning. The article explores how increasingly complex topics may be taught, and how teachers can ensure that children have a good grasp of a topic. There are suggestions for further reading to extend the primary teacher's knowledge of the area. Some of the suggestions appear in a related resource Progression & questioning techniques in primary science projects
Force Which material makes a good parachute?
Parachute11.png
A simple investigation into parachutes and air resistance
This activity supports a number of learning types:
  • small group work(ta) - investigation conducted by small groups reporting back to the class.
  • whole class(ta) dialogue(ta) - discussion of each situation 
open-ended questions(ta) – why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – linked in with the rest of the activities in this OER, topic work in design and technology, literacy, numeracy
  • inquiry(ta)-based learning – initial presentation to the class can be framed as a problem for them to solve; co-enquiry – children working collaboratively
  • arguing and reasoning(ta) – persuading each other about their explanations.
  • exploring ideas – developing understanding of key scientific principles.
Force What floats and what sinks
Glass of water1.png
Is getting in the bath a way to lose weight?
This activity supports a number of learning types:
  • small group work(ta) - investigation conducted by small groups reporting back to the class.
  • whole class(ta) dialogue(ta) - discussion of each situation 
open-ended questions(ta) – why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – linked in with the rest of the activities in this OER, topic work in design and technology, literacy, numeracy.
  • inquiry(ta)-based learning – initial presentation to the class can be framed as a problem for them to solve; co-enquiry – children working collaboratively
  • arguing and reasoning(ta) – persuading each other of their explanations.
  • exploring ideas – developing understanding of key scientific principles.
Forces Force in the early years
Push1.png
Thinking about the language of force
This lesson idea highlights the scientific language(ta) around the topic of force, and through group work(ta) and whole class(ta) dialogue(ta) engages pupils in inquiry(ta) and the scientific method(ta) surrounding force.
Genetics How DNA is sequenced: the stages
Sequencingdna.png
The complexity and scale of genome sequencing
Students match diagrams of the stages of DNA sequencing with a list of text descriptions of the process. The lesson can involve students discussing in pairs / group work(ta), followed by a teacher or student-led plenary. Students would share ideas, come to a consensus and check the ‘whole class(ta) response’ with their version. The teacher's questioning(ta) can focus on scientific method(ta) and use of scientific language(ta). The lesson idea provides opportunities for the effective use of assessment(ta).
Genetics Human Genome Project: from Sequencing to Sharing Genomic Information
Howyourgenome0.png
Discuss and share economic, political and ethical issues.
This resource provides guidance on how to use whole class(ta) discussion(ta) and/or small group work(ta) to engage students with the science and the economic, political, ethical(topic), legal and social issues of a scientific project such as the HGP. Its focus is on the scientific method(ta); language(ta) and the nature of scientific inquiry(ta).
Global education A global dimension to science education in schools
Globalscience1.png
Science and technology beyond the Western world
This study unit is aimed at teachers who would like to give a more global feeling to their teaching. It shows how to source articles with an emphasis on science and technology beyond the Western world and how to incorporate them into teaching the curriculum.
Graph Variation of human characteristics - Visualising Class data
SC0012 screenshot.png
A big survey of ourselves, measuring hands, feet and more
The lesson offers the opportunity to explore measurement, relationships between measurement, and ways to visualise and summarise this data. The use of ICT(i) allows the teacher to enter data and for pupils to immediately see the impact this has on the pie chart and frequency tables (which are automatically updated). This also allows the teacher to change the 'range' for the frequency counts, and discuss with pupils the impact of this on the pie chart, and whether this is a good representation - encouraging the use of mathematical language(ta) and scientific method(ta) throughout. In collecting the data pupils have opportunity for some self-directed group work(ta) - to measure various lengths as described below - and the teacher could use whole class(ta) questions(ta) to explore the strategies taken to conduct this investigation(ta).
Group talk Group Talk & Argument in Science Teaching
Grouptalk.jpg
Activities and practical examples to use group talk in science lessons
This Teacher Education resource covers background information, practical activities, and practical examples for engaging dialogue(ta) in the context of group work(ta) and whole class(ta) work effectively in the classroom, in particular to ensure high quality reasoning(ta). The resource encourages teachers to think about situations and prompts for argumentation(ta) and how these might be used to support the science curriculum.
Group talk Organising Group Talk in Science
Climateforgrouptalk-dfes1.jpg
The group in which students are expected to work has a huge bearing on their willingness to speak openly. Can we better manage group talk?
This resource contains activities and examples relating to group talk(ta) in science lessons in whole class(ta) and group work(ta) settings.
ICT IT in Secondary Science
Itinsecondaryscience0.png
A whole book of ideas for using generic ICT tools in science
This book provides resources and lesson ideas with ICT(i) as a key focus for use in inquiry(ta) based learning and the scientific method(ta). It offers opportunities for use of group work(ta) and collaboration(ta) as well as whole class(ta) questioning(ta).
ICT Data Logging and Control
Dataloggingandcontrol0.png
A compendium with numerous ideas for using sensors to teach science.
This book provides a set of resources and lesson ideas with ICT(i) as a key focus for use in inquiry(ta) based learning and the scientific method(ta). It offers opportunities for use of group work(ta) and collaboration(ta) as well as whole class(ta) questioning(ta).
ICT IT in Primary Science
Itinprimaryscience0.png
A whole book of ideas for using generic ICT tools in science
This book is a compendium of lesson ideas with ICT(i) as a key focus for use in inquiry(ta) based learning and the scientific method(ta). It offers opportunities for use of group work(ta) and collaboration(ta) as well as whole class(ta) questioning(ta).
ICT Primary Science Curriculum Activities with Sensors
Dataharvest1.png
A compendium of investigations with sensors in primary science
This resource provides a set of activities to engage pupils in inquiry(ta) based learning in the scientific method(ta), often making effective use of ICT(i) and sensors(tool). The activities involve whole class(ta) questioning(ta) and collaborative(ta) group work(ta).
ICT Data Logging inservice booklet
Data logging inservice1.png
A compendium of CPD and ITE activities on why we use sensors and the practicalities of implementing their use
Activities and advice for using ICT(i) for use in inquiry(i) based learning and the scientific method(i).
ICT T-MEDIA video case studies of ICT use
T-medialogo.jpg
Multimedia tools for professional development
The materials aim to stimulate debate and reflection rather than present models of ‘best practice’. They include hyperlinks to video clips from the emerging pedagogical themes, built-in prompts for thinking and discussion, suggested alternative approaches, and analytic commentary from teachers and researchers involved. They illustrate and question how the technologies can be exploited to enhance learning in real classrooms. The resources can be used by individuals or groups of colleagues / student teachers.
ICT Infant and Primary Science Activities with Sensors
EasySense-Vu ebook from Data Harvest1.jpg
A compendium of investigations with sensors in primary science.
This is a compendium of activities to engage pupils in inquiry(ta) based learning in the scientific method(ta), often making effective use of ICT(i) and sensors(tool). The activities involve whole class(ta) questioning(ta) and collaborative(ta) group work(ta).
Investigation Persuasive argument and evidence-based conclusions about the best car
Bestcar0.jpg
Got a new motor? Talk about your investigation like a scientist
This activity involving inquiry(ta)aims to develop children’s ability to support their conclusions with evidence. The teacher will model(ta) and encourage the use of the language(ta) that children require to discuss or present their data. The teacher can explain their rationale using the lesson below.
Investigation Scientific Definitions
Taboo card game.png
Prepare for ISA exams here...
Students are required to make use of a number scientific definitions as part of their Individual Skills Assessment (ISA) for GCSE. This resource uses the following activities in an attempt to liven up the teaching of these words:
  • anagram activity
  • card match activity
  • Taboo game
  • crossword
Investigation Hypothesis and Variables
Variable poster.png
Prepare for ISA exams here...
Students are required to make hypotheses and draw graphs for continuous and categoric data as part of their Individual Skills Assessment (ISA) for GCSE. This resource presents a hypothesis as a 'best guess' or proposal, intended to explain facts or observations available, prior to doing an investigation. Students work collaboratively to plan the following investigations, coming up with hypotheses and considering the variables:
  • size of chickens and the eggs they lay
  • 100 meter running time and age of athlete
  • number of butterflies and car pollution
  • car manufacturer and car pollution
  • contraceptive pill efficiently

They then plot graphs of data from similar contexts to their planned investigations deciding if the graphs should be bar charts or scatter plots/line graphs depending on whether or not the variables are continuous or categoric.

Language Jargon - the language of science
Jargon-imagebot.png
What colour is lime water? How the science language confuses
This resource was made for general public interest but may find use as a discussion starter in teacher education.
Learning objectives Writing Learning Objectives in Primary Science
ObjectivesTarget.png
How are learning objectives supposed to work? How can one achieve mastery in writing learning objectives?
This resource encourages teachers to think about ways to link learning objectives(ta) to the curriculum which also helps to conceptualise their teaching schemes. It also helps children to understand what they are learning and what they are aiming for. The resource brings together key ideas, looking at specific outcomes from activities, vocabulary(ta), differentiation(ta), resources and curriculum development(topic) and short term planning(ta). It could be used as a 'refresher' on ideas when planning lessons.
Literacy Developing Language in Primary Science
Developinglanguage1.png
The resource would be particularly useful for PGCE students thinking about incorporating cross-curricular(subject) strands, or teachers looking to do the same, either in their own practice or in new curriculum development(topic) work.

Language development and the use of appropriate vocabulary(ta) is highlighted as important across the curriculum. Incorporating this consideration into science planning(ta) is important for meeting the target of developing language. The importance of language and talk in science – including through group work(ta), and Whole class(ta) dialogue – is highlighted elsewhere (and in the resource) but includes the ability to explain concepts, understand synthesising ideas (including those from other people and texts), and the need to read and write for different purposes, (including conceptual understanding, data presentation, etc). These are key ideas in communicating the scientific method(ta)

Living things Classifying and organising living things using images
Bee-gathering-polen602.jpg
Find different ways to classify living things
This lesson offers opportunities to explore ways to classify living things as well as characteristics which might be relevant, and how to address difficulties that may arise when trying to classify things in this way. The activity may be enhanced by the use of ICT(i) software (e.g. Picasa) but could be carried out with paper-based resources.

This lesson presents a good opportunity for small group work(ta) and some inquiry(ta) into how we classify; and why some classification methods might be more useful, or more scientifically interesting than others. There is also a good opportunity to use different sorts of questioning(ta); to encourage pupils to question each other; to engage in peer assessment(ta) and to focus discussion(ta) on the scientific method(ta) using key vocabulary(ta).

Materials Materials for Insulation
Insulationcoffee1.png
How to insulate a cup of coffee.
Click here to view further results.

Category:Science Category:Resources