Resources with topic Visualisation
1 Tools that have this topic
2 Lesson ideas that have this topic
Visualisation | Radioactive Decay and Carbon Dating | |
Using 'real life' data to explore exponential graphs This lesson features a ‘real life’ example for students to explore using visualisation^{(ta)} via GeoGebra. The focus on ‘real life’ increases student motivation.
The activity engages pupils in group talk^{(ta)}, mathematical thinking^{(ta)} and vocabulary^{(ta)}. This open ended^{(ta)} task encourages higher order^{(ta)} thinking, and encourages whole class^{(ta)} discussion^{(ta)}/questioning^{(ta)} and inquiry^{(ta)} projects. | ||
Visualisation | Number and representation game. | |
Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.
| ||
Visualisation | ORBIT/GeoGebra Competion 2013 | |
The 2013 competition has generated five high quality open-ended activities that support interactive teaching and allow children (age 6-10) to explore an element of mathematics for themselves. The following guidance note are provided for each resource:
| ||
Visualisation | Kepler's Third Law | |
Using 'real life' data This lesson features a ‘real life’ example for students to explore GeoGebra. The focus on ‘real life’ increases student motivation.
The activity engages pupils in group talk(i), mathematical thinking(i) and vocabulary(i). This open ended(i) task encourages higher order(i) thinking, and encourages whole class(i) discussion(i)/questioning(i) and inquiry(i) projects. | ||
Visualisation | Variety of perimeter with fixed area | |
Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.
| ||
Visualisation | Flying paper planes | |
Very visual and interactive and simple to understand This lesson features a ‘real life’ example for students to explore using visualisation^{(ta)} via GeoGebra. The focus on ‘real life’ increases student motivation.
The activity engages pupils in group talk^{(ta)}, mathematical thinking^{(ta)} and vocabulary^{(ta)}. This open ended^{(ta)} task encourages higher order^{(ta)} thinking, and encourages whole class^{(ta)} discussion^{(ta)}/questioning^{(ta)} and inquiry^{(ta)} projects. | ||
Visualisation | Solar and Lunar Eclipse | |
To show and explain how a Solar and Lunar eclipse occurs This lesson features a ‘real life’ example for students to explore using visualisation^{(ta)} via GeoGebra. The focus on ‘real life’ increases student motivation.
The activity engages pupils in group talk^{(ta)}, mathematical thinking^{(ta)} and vocabulary^{(ta)}. This open ended^{(ta)} task encourages higher order^{(ta)} thinking, and encourages whole class^{(ta)} discussion^{(ta)}/questioning^{(ta)} and inquiry^{(ta)} projects. | ||
Visualisation | Using visualisation in maths teaching | |
Thinking about visualisation in education. This unit looks at visualisation^{(ta)} as it relates to mathematics, focusing upon how it can be used to improve learning. It also identifies ways in which to make more use of visualisation within the classroom.
| ||
Visualisation | Positioning fractions on the number line. | |
Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.
| ||
Visualisation | Variety of areas with fixed perimeter. | |
Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.
| ||
Visualisation | Circumference of a Circle. | |
Interactive GeoGebra investigation that allows students to explore an element of mathematics for themselves.
| ||
Visualisation | Perimeter of a rectangle. | |
Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.
| ||
Visualisation | GeoGebra STEM Exploration | |
Develop 'real world' GeoGebra mathematical modelling applications which reach out to a wide range of users both students and teachers The half-term activity consists of 3 half-day workshops interspersed with home-working and on-line collaboration. Each workshop is part tutorial and help in GeoGebra, part development, presentation and feedback on their emerging work. The three half-day sessions become gradually less structured as students become more confident taking the initiative in developing their own work:
An initial GeoGebra tutorial session features ‘real life’ examples such as mathematical modelling^{(ta)} and visualisation^{(ta)} from photographs of patterns and structure in flowers and architecture; exercises such as “math aerobics” where students model algebraic functions kinaesthetically; and data analysis and exploration such as from astronomy (Kepler's 3rd law) and athletic performance (Usain Bolt’s 100m sprints). Realistic examples such as these, or from students’ previous work, are essential to get the ball rolling. Following this, the onus is very much on the student’s own initiative. The focus on ‘real life’ and student ownership of ideas and project development increases student motivation. The activity engages pupils in group talk^{(ta)}, mathematical thinking^{(ta)} and vocabulary^{(ta)}. This open ended^{(ta)} task develops higher order^{(ta)} reasoning^{(ta)}, and encourages whole class^{(ta)} discussion^{(ta)}/questioning^{(ta)} and inquiry^{(ta)} projects. |
- Visualisation